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Abstract Within the linear response theory we derive an expression for the alternating current 
(AC) magnetoconductance (MC) of a quasldne-dimensional mesoscopic system in term of 
its pertinent transfer matrices. It is then employed in numerical simulations of the AC MC 
for some specific systems. At low frequencies and for weak magnetic fields, the AC MC of 
a clean system is expressible as a sum of independent contributions from the different one- 
dimensional subbonds (which is trivially valid for DC conductance). For disordered systems. it  
is conjechlred that neither the conductance nor its logarithm is self-averaging. Moreover, the 
fundamental phenomenon of positive MC no longer holds at finite frequencies. 

1. Introduction 

Recent experimental work [ 1 J on the frequency dependence of the Aharonov-Bohm effect 
in Ag rings motivated the study of the dynamic response in mesoscopic systems. In recent 
studies [2], a self-consistent theory which relates the AC conductance to the scattering 
matrix in multi-port conductors has been developed. It has already been applied [3] in 
the investigation of dynamic magnetoconductance (MC) fluctuations in disordered metallic 
systems. 

In this work, a somewhat related formalism aimed at the study of the dynamic response 
of mesoscopic systems subject to a constant magnetic field is presented, based on transfer 
matrix theory. In the absence of a magnetic field, the main steps of the present approach have 
been briefly explained in two earlier studies [4]. Therein, the AC conductance G'(E, U )  at 
the Fermi energy E and frequency w has been investigated for a two-probe non-interacting 
quasi-one-dimensional system of length L .  The central object of the present work is an 
extension of the formalism to include the effect of the magnetic field, and the evaluation of 
the AC M C  in several simple (but still interesting) cases. In particular, we are interested in 
the combined effects of disorder, magnetic field and finite-frequency electric field. 

Admittedly, the formalism suggested below is less general than the complete theory 
detailed in [Z], at least in two senses. First, it is useful mainly for two-probe systems 
with quasi-one-dimensional geometry. Second, it is primarily effective for non-interacting 
systems (the importance of the electron-electron interaction in the study of response 
functions has been stressed repeatedly in [2,3]). Yet, one may, at least in principle, account 
for interaction effects within some screening approximation, since an exact treatment of the 
many-body problem is out of reach anyhow. 

The main advantage of the present approach is its relative simplicity. The use of 
transfer matrix formulation proves to be very useful both for understanding the underlying 
physics as well as in actual numerical computation, especially for disordered systems. While 
much progress has been recorded in applying transfer matrix techniques to the study of DC 
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conductance, it is still not in frequent use in the investigation of AC conductance. This is 
not surprising, since, in that case, it is not sufficient to know the total transfer matrix which 
transforms the wavefunction from one side of the sample to the other. Inspection of the 
Kubo formula shows that, in order to evaluate the AC conductance, the wavefunctions and 
the currents must be evaluated inside the probed system. Yet, this information is available 
anyhow when the total wansfer matrix is computed, since one has to know the intermediate 
transfer matrices which transform the wavefunction from one point to another within the 
system, 

It should be reiterated here that, conceptually, the transfer matrix theory is by no means 
a mere technical concept. Transfer matrix algorithms are reputed to be a very important tool 
in the investigation of the DC conductance of  mesoscopic systems. Many physical concepts 
such as weak localization, positive MC, universal conductance fluctuations, universal 
corrections to localization length, etc, are elegantly analysed in terms of random transfer 
matrix theory [5,6]. One of the questions which is addressed here concerns the effect of 
the magnetic field on the AC conductance of a weakly disordered system. As far as DC 
conductance is concerned, the theory of weak localization tells us that, in the absence of 
spin-orbit interaction, the magnetic field leads to an enhancement of the conductance 171, 
This remarkable observation is referred to as a positive MC. To the best of our knowledge, 
the question of whether this phenomenon remains valid also for AC conductance has not 
yet been addressed. Our results explained below show that the positive MC deteriorates as 
the frequency increases, until it no longer holds. 

This paper is organized as follows. In section 2, the formalism is developed for the tight- 
binding model and the expression for the AC MC is summarized in equations (2.19) and 
(2.20). In section 3 we apply this formulation for various quasi-one-dimensional systems. 
First we display the AC MC of a~c lean  system in a continuous (strip) geometry (where 
the role of edge states is stressed) as well as for a two-chain tight-binding model. Then 
we concentrate on disordered systems and discuss two questions, namely the behaviour of 
the AC conductance as a function a f  the system's length and the question of whether the 
concept of a positive M C  makes sense also for finite frequencies. A short summary is given 
in section 4. 
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2. The AC MC in terms of transfer matrices 

In this section the derivation of an expression for the AC MC for quasi-one-dimensional 
lattice models governed by tight-binding Hamiltonians is 4 e d  out. (For simplicity we 
shall work in two-dimensional space.) Usually, transfer matrices in such systems are not 
given in the plane-wave representation, and hence they do not share the current conservation 
property. Hence, at the beginning of this section some notation and transfer matrices in the 
plane-wave representation are introduced for self-consistency. After this task is completed, 
the expression for the AC MC is presented. At the end we shall also comment on the 
formulation which is pertinent to continuous geometry (more precisely, to a system having 
the shape of a two-dimensional strip with parabolic confinement in the transverse direction). 

Consider a square lattice (with lattice constant a = 1) in the form of an infinite strip 
whosesitesarelabelled by ( j ,m)wi th -w < j < w a n d m  = - ( M - l ) / Z , - ( M - 1 ) / 2 + 1 ,  
. . . , ( M  + l ) /Z.  On this lattice, an electron is hopping in the presence of a perpendicular 
magnetic field B.  For 1 < j < L there is an interaction region (referred to as the sample) 
in which the electron is subject on each site to an elastic scattering. The elastic on-site 
potential is denoted by the distribution of which determines the nature of the quantum 
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eigenstates. The dynamics of the electron is governed by the tight-binding Hamiltonian [8] 

where { l j m ) ]  is a complete set of orthonormal and localized states associated with the lattice 
sites ( j ,  m). The hopping matrix element between nearest neighbours in the y direction is 
taken to be the unit of energy, while that between nearest neighbours in the x direction is 
V .  As usual, if we need to investigate impure systems, the disorder is implemented through 
the site potentials &jm which are considered to be uncorrelated random variables. We use a 
hard wall boundary on the transverse (m) direction so that in the Landau gauge the vector 
potential on the horizontal link is m& where 4 = e B / h  denotes the number of magnetic 
flux quanta in one unit cell times 272. Starting with the Schrodinger equation HW = E", 
the wavefunction is expanded in terms of lattice site states: 

where cjm are complex coefficients, for which the following set of equations is obtained: 

&j,cjm + cj,+l + c j , , ~  + V(exp(imQ)cj+l, + exp(-imb)cj-t,) = Ecj,. (2.3) 

Let us first recall the main results in the simple (ordered) case with &jm. To simplify the 
notation, denote by cj the M-dimensional column vector of components cj,, by 0 the 
diagonal matrix with diagonal elements exp(imq5) and by X the symmetric matrix with 1 
on both sides of the diagonal and zero otherwise. Then one can rewrite equation (2.3) in 
the form 

V(@cj+i  + 0tcj-1) + Xcj Ec j .  (2.4) 

With the separation c, = exp(ikj)Y with --x e k < x, one defines Y as an M-dimensional 
vector whose components Y ( m )  (independent of j )  satisfy the Harper equation 

[2Vcos(k t A) + X  - E ] Y  = 0 (2.5) 
where cos(k + A )  is a diagonal mabix of dimension M with diagonal elements cos(k+m@). 

When equation (2.5) is considered as an eigenvalue equation, the solutions Y,(m) and 
the dispersion curves En(k)  are sought (here n is the band index). In a scattering problem 
such as that discussed here, the problem is reversed in the sense that the energy E is given 
inside a band, and one looks for the corresponding momenta. These are the solutions of the 
equations 

E,(k,) = E.  (2.6) 

The solutions of equation (2.5) at the given scattering energy E and an allowed momentum 
k, are denoted by Y.(k,; m) .  When k, is real, the wavefunction 

(2.7) 
1 

= - -Cexp( i sk , j )Y , (k . ;m) l jm)  a jm 
is a current-carrying (propagating) state (where N, is a normalization constant to be 
determined below and s = +1 depending on the initial direction of the incoming wave). 
For any solution in channel n with k, > 0 there is another with k, c 0 (due to the reflection 
symmetry of our system about the horizontal axis). The normalization constant N, is fixed 
by the condition that the surface integral of the current density of the propagating states is 
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unity. Note that the velocity operator in the tight-binding model is sin(k + A ) ,  and so we 
require that 
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This condition together with equation (2.5) yields 

N -'(") 
" - 2 V  dk a=r-, 

With these definitions, it is not difficult to derive an expression for the off-diagonal matrix 
element of the current [9]. Furthermore, only with the above definition of the current can 
one show from equation (2.3) that the following orthogonality relation holds: 

(2.10) 

where I ,  is hence defined. 
The standard application of transfer matrix employed in the present context is to obtain 

the 2M-component vector (c,+l, c,) from the 2M-component vector (cj, cj-1). Here, 
however, we need a different representation. Let us expand the wavefunction in a plane- 
wave basis: 

(2.11) 
where qm = k ,  + m@ and k, is defined in equation (2.6). The 2M x 2M transfer matrix in 
the plane-wave representation, denoted here by ru) ,  transforms the 2M-component vector 
(a], b,) to the 2M-component vector (a,+], bj+l). Straightforward @ut somewhat tedious) 
algebra results its explicit form 

cj, = uj, exp(iq, j )  + bj, exp(-iq,j) 

(2.12) 

where I is the 2M x 2M unit matrix and ~(j),  a and p( j )  are the diagonal matrices of 
order M with diagonal elements 

The dependence of the transfer matrix on the magnetic flux (which enters through the 
momenta 4,) will not be indicated but should be kept in mind. 

In our expression for the AC MC, a key role is played by transfer matrices T ( j )  which 
transform the wavefunction from one side of the system (say the left) up to a column j .  
Explicitly, 

(2.14) 

Note that the transfer matrix through the entire sample is T = TuZL) .  For the computation 
of the DC conductance, knowledge of T is enough, using the remarkable Pichard [lo] 
formula 

e' 
h 

GDC = -2Tr[(TtT) t (T'T)?' + I]-'. (2.15) 

Using the formalism developed earlier [4], we may now derive an expression for the AC 
MC in the tight-binding model, using the transfer matrices in the planewave representation 
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introduced above. Let us first recall that within the standard linear response theory, in this 
model, the AC MC C(o) is given as [ l l ]  

(2.16) 

where (a!, Ib), and E., Eb are eigenstates and eigenenergies, respectively, of the entire 
system and f ( E )  is the Fermi distribution function at energy E. The current operator is 
given by 

c(lj + lm)(jmlsxp(-imC)+ l j m ) ( j  + Imlexp(imq5)). (2.17) 
eV J V )  = 

m 

Following the same steps as in [4], we get 

(2.18) 

where g ( E ;  w )  has the trace form 

g ( E ; o )  = $Tr{@(E)Q(E, E+ho)@(E+ho)Q+(E ,  E + h o ) ] .  (2.19) 

The 2M x 2M matrix @ ( E )  is defined as 

@ ( E )  = 2[T(E) 'T(E)+  I]-' (2.20) 

where we recall that T ( E )  is the transfer matrix (in the plane-wave representation) through 
the entire system. Moreover, the dynamic matrix Q is defined as 

L 
Q ( E , E + h w )  = c T O ' ) ( E ) ' H ( j ) ( E , E + h o ) T ( j ) ( E + R o )  (2.21) 

j = l  

in which the 2M x 2M kinematic matrix H ( i )  is conveniently expressed in terms of its four 
N x N blocks: 

which turn out to be diagonal with elements 

The dependence on E and E + hw enters through the momenta 

qm = k ,  + m @  qk = kh  + m C  

(2.22) 

(2.23a) 

(2.23b) 

(2.24) 

where, as we recall, the momenta k, and k k  satisfy (see equation (2.6)) E,(&) = E and 
Em(k:) = E + hw, respectively. 

Equations (2.18)-(2.24) with the transfer matrices given in equations (2.12)-(2.14) are 
the central result of the present section. They are completely equivalent to the Kubo 
formula (2.16) but are much more useful from a practical point of view. It can easily 
be verified that, as the frequency tends to zero, the Pichard formula (2.15) for the DC 
conductance is recovered. Naturally, the structure of these equations is more involved 
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than that of equation (2.15) but the basic ingredients are simply the transfer matrices T ( j )  
(equation (2.14)) at energies E and E + hw. 

As a simple example for the use of the above formalism let us consider a clean system, 
which in this model is implemented by the absence of site potentials (E],,, = 0). This implies 
that all the transfer matrices are identical with the unit matrix. The AC MC then becomes 
a sum of independent contributions from the Id subbands, namely 

J Cohen and Y Avishai 

(2.25) 

where 

Equation (2.26) shows that, unlike the DC case, the AC conductance of a clean system 
depends on the system’s length L in a non-trivial way and decays as L-2 for large L. Note 
also that, if one uses the Ohmic relation between conductance and conductivity, the last 
quantity will decay as L-’ for large L ,  contrary to our intuition. The reason is that the use of 
the Ohmic relation as it stands is not justified, since it relates a bulk property (conductivity) 
to a mesoscopic property (conductance) without taking into account the effect of the leads. 
Note that the basic quantity is measurable, which, in the present context, is the conductance 
and not the conductivity. This point has already been discussed in earlier work [4,8]. 

Before presenting our numerical results it is instructive to extend the above formalism 
so as to include models with continuous geometry (in contrast with lattice models), where 
the role of edge states is crucial [12,13]. We carry it here briefly, since the structure of the 
equations is almost identical with those presented above. As a typical continuous system 
we may consider a strip stretched along the x direction, in such a way that electrons are 
confined in the transverse ( y )  direction and are subject to a strong magnetic field in the 
z direction. In the Landau gauge, the clean system possesses translation invariance along 
the x direction, and the basic solutions are edge states of (quasi-)momentum q: 

(2.27) 

with energy &(q) in which n is the band index. The number of dispersion curves which 
intersect the Fermi energy E determines the number N of propagating modes [14] with 
momenta kq, defined as solutions of the implicit equation E n ( i q n )  = E .  For each N 
there are N edge states going to the right and the same number of edge states going to 
the left. The AC electric field is directed along the x direction and the leads are separated 
by a distance L.  If the disorder is implemented by short-range potentials located at points 
( x i ,  y;) such that 0 = xo c XI c x2 < . . . c X K  < x ~ + ,  = L,  then between two points xj  

and xj+l the wavefunction in this slice is a sum of edge states: 

*(i)(x, j )  = C [ a : ’  exp(iqmx)fm(y; 4.) + b:)exp(-iqmx)fm(y; -qm)l. (2.28) 

From now on, the definition of transfer matrices is identical with that of equations (2.12)- 
(2.14) and the evaluation of the AC MC follows (2.18H2.24). The only difference occurs 
in the structure of the kinematic matrix H (whose detailed expression will not be given 
here). Its four N x N block matrices are not diagonal (see equations (2.22)-(2.23)) and, as 
a result, the decomposition of the AC MC into a sum of contributions from one-dimensional 
subbands (equations (2.25) and (2.26)) is not exact. The presence of both a magnetic field 
and an AC electric field lead, in the continuous geometry, to coupling between different 

e&, Y )  = exp(iq*)f,(y: 4) 

N 

m=l 
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modes even without scattering by impurities. The fact that this coupling is absent in the 
tight-binding model seems to us an artefact resulting from the Peierls [U] substitution 
implementing the magnetic field in tight-binding models. Yet, this difference is meaningful 
only for clean systems, since, for disordered systems, scattering by impurities will couple 
all modes anyhow. 

3. Results and discussion 

Before introducing disorder, let us start by looking at the AC MC of a clean system and 
compare the results in the continuous and in the tight-binding models. As a continuous 
geometry model for which analytical solutions are available we might consider a strip 
stretched along the x direction in which the transverse confinement is implemented by a 
harmonic potential U(y) = fm*m;yz. The edge states e,(x, y) and the dispersion curves 
E,&) are known in closed form. It is useful to define the parameters 

Then the functions fn(y; q )  are Gaussians multiplied by Hermite polynomials (shifted by 
yg = qei) ,  and for the energies one readily finds the dispersion law 

(3.2) 

The AC electric field is applied along the x direction and the leads are separated a distance 
L apart. 

Figurc 1. The AC MC C(o) (in units of e'lh) for a clean system in the continuous geometry 
with parabolic confinement, as a function of the parameter l w / E ~ ,  where lhe other p - ~ t e r ~  
am fixed by Lcl'i2 = 571 and kprr-'i2 = n /2  -. zero magnetic field, - - -, b = 0.6~~: 
..._ , b = 1 . 2 ~ .  

In figure 1 we display the AC MC at zero temperature (in units of e 2 / h )  of a strip 
whose electrons are confined by such a parabolic potential. The conductance is plotted 
as a function of the frequency in the range 0 < ftw < 0 .5Ef .  The length of a system 
and the Fermi momentum are fixed by La'lz = 5n and kfa- ' i2  = n/2. The AC MC is 
calculated at three values of the magnetic field, namely b = 0, b = 0.6a and b = 1 . b .  
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For these values of the parameters we have only one propagating channel ( N  = I ) .  For 
low frequencies we see that the magnetic field attenuates the conductance, which is to be 
expected in clean systems. As  the frequency becomes higher, the conductance oscillates as 
a function of the frequency. Later we shall see that the periods of oscillations for different 
magnetic fields are related to Fermi velocities in the various subbands. 
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The conductance as a function of the magnetic field in the range 0 < b < 1rotj2 is 
plotted in figure 2, for which the other parameters are as in figure 1, again leaving a single 
propagating edge state ( N  = 1). For ho < 0.01 E p  the conductance is very close to the DC 
quantized value. For higher frequencies the slope increases until the conductance starts to 
oscillate as a function of the magnetic field. 

In order to obtain a better understanding of this behaviour let us inspect the AC MC 
(again at zero temperature) at low frequencies (ha << E p )  where we can get an analytical 
approximation for it. In the low-frequency limit the main contribution to the AC MC will 
come from the diagonal parts of the matrices H, with the result 

where 

(3.4) 

is the Fermi velocity in channel n and L , ( x )  is the Laguerre polynomial. Within this 
approximation, the oscillations can be traced out easily since the conductance is expressed 
as an incoherent sum of contributions from edge states of different energies. For example, 
the oscillations can be seen by changing the frequency (the difference between the energy 
of the edge states). Alternatively, they can be achieved by varying the magnetic field which 
changes the velocity of the electrons in the various channels. In the zero-frequency limit, 
one obtains G = N ( e 2 / h )  as expected. 

Now let us turn to calculations pertaining to the AC MC in tight-binding models, again 
considering clean systems first. In figure 3 we plot the AC MC at zero temperature, as a 
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.... ..:- . . 4 

0.0 0.1 0.2 0 3  0.4 0.5 
h” 

Figure 3. The AC MC in the tight-binding model for an ordered system of length L = SO and 
widlh M = 2 as a function of ho/V, where the Fermi energy is taken to be at the band centre: 
- , zero magnetic flux per plaquene (6 = 0); - - -. 6 n/3;  .. . . , ., 6 = n/2. 

function of the frequency in the range 0 < Rw < 0.5V. for an ordered system ( E , ~  = 0) 
of length L = 50 and width M = 2. The Fermi energy is taken at the centre of the band 
so that the number of channels is two. The AC MC is calculated for three values of the 
magnetic field (expressed here in terms of magnetic flux per plaquette), namely @ = 0, 
@ = n / 3  and 4 = r / Z ,  Very similar to our results for the continuous geometry we can 
see that near zero frequency the magnetic field attenuates the conductance, but at higher 
frequencies the conductance oscillates as a function of the frequency. 

F i r e  4. The AC MC as a function of the magnetic field for the same system as in figure 3: 
_ - -  , Eo = O.OlV, (left-hand ordinale): -, ho = 0.05V OeA-hand ordinate); . . . . . .. 
ho = 0.25V (right-hand ordinate). 

The conductance as a function of the magnetic flux in the range 0 < @ < n/2 is plotted 
in figure 4, with other parameters as in figure 3, for frequencies Ro = O.OlV, Ro = 0.05V 
and Rw = 0 .25V.  As expected, in the limit of zero frequency we obtain G = N ( e z / h )  
where N is again the number of occupied subbands (not necessarily equal to M of course). 
For ho = 0.01 V the value of the conductance is very close to the DC quantized value and 
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0 200 400 600 
I. 

I ,  

-5 4 
0 100 ~ 200 300 400 

L 
F w r e  5. (a)  The quantity (In[G(w. L)]) calculated in the tight-binding model (for a system 
of width M = 2) as a function of the length of the system L for weakly disordered systems 
(w = 0.1 V ) ,  for three values of the tnagnetic field (expressed as Eux per plaqueue): .. r$ = 0, 
0,  n/4; +, n/2 .  Other parameters are E = 0 (band centre) md ho = CLlV. The average is 
obtained for 500 samples, (b)  Same as (a)  for stronger disorder (w = 1.OV.) 

it is almost a straight line. For higher frequencies the conductance oscillates as a function 
of the magnetic flux. As in the continuous case, these results can be easily interpreted in 
terms of equation (2.26). 

Finally, let us investigate the AC MC of a disordered system in the tight-binding model. 
The pertinent questions which we pose are, first, how the AC MC of a weakly disordered 
quasi-one-dimensional system decays as a function of the system’s length L and, second, 
how the magnetic field affects the conductance compared to its zero-field value. For the 
DC MC, both questions have definite answers. The conductance decays exponentially with 
length (the decay rate is determined by the localization length t ( E ,  E ) ) .  Moreover, the 
theory of weak localization implies that in the absence of spin-orbit coupling the magnetic 

, .. 
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1.0 

0.8 

0.6 

0.4 

0.2 

0 . 0 t -  " ' I " '  " ' I " '  " I  

0 0.02 0.04 0.06 0.08 0.1 0.12 
liO/V 

Figure 6. The quantity (G(o. L ) )  calcolated in the tight-binding model (for a system of width 
M = 2) shown as a function of hot  V for a disordered system of length L = 200 and for @ = 0 
(t) and n/16 (0). The average is obt~ned for 500 samples. 

field increases the conductance in such a wav that 1161 

(3.5) 

is not so clear. First, evidence is mounting which shows that neither (G(w))  nor (In[G(w)]) 
is a self-averaging quantity. The question of whether one can define a frequency-dependent 
localization length has occupied us for some time, and no definite answer has been found. 
Numerical calculations strongly suggest that (ln[G(w)]) - -InL, but there is so far no 
general proof for this conjecture. As for the second question, we expect that the presence 
of time-dependent fields destroys the arguments of weak-localization theory since the role 
of the magnetic field as a time-reversal violating force is not unique. 

In figures 5 the first question is addressed. In figure 5(a), the disorder is taken to be 
weak (w = 0.1 V ) .  The quantity (In[G(w)]) is plotted as a function of L for fixed w and for 
Q, = 0, rr/4 and n/2. The magnetic field tends to decrease the conductance and, when the 
magnetic field is strong (@J = a/2), there are regular oscillations, reminiscent of the clean 
system. For such a strong field, the disorder appears to be just a small perturbation. The 
situation is different in the medium disordered case (w = 1.OV) displayed in figure 5(b) .  In 
this case the magnetic field has almost no effect at all. It is also evident that (In G )  is not 
proportional to -L, i.e. it is not self-averaging. Rather, the conjecture (ln[G(w)]) - -In L 
is more appropriate here. 

Finally, in figure 6 we address the second question and plot (G(o))  as a function of 
h o /  V for a disordered system of length L = 200 and for two values of the magnetic field, 
namely Q, = 0 and 11/16. It i s  evident that at small frequencies the positive MC prevails, 
whereas it is washed out completely at higher frequencies. 
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4. Summary 

We have developed a formalism for the evaluation of the AC MC in quasi-one-dimensional 
mesoscopic systems in terms of the system's transfer matrices. Instead of one transfer matrix 
which transforms the wavefunction from one side of the system to the other side we need all 
partial matrices which transform the wavefunction from one point of the system to another 
point. The central equations which can be used for actual calculations (and which seem to 
be relatively simple) are (2.18H2.24). They are developed for tight-binding models, but 
similar expressions hold also in continuous geometry models. The present formalism can 
be considered as an attempt to translate the Kubo formula for the response functions at 
finite frequency into the Biittiker-Landauer formulation. It reduces to the Pichard formula 
when the frequency vanishes. Its limitations have already been stressed in the introduction, 
but nevertheless its simplicity and scope of applications enable one to use it in numerous 
physically interesting cases. 

Employing the above formalism, the AC MC is then calculated for several representative 
cases. It is found that, even for clean systems, the structure of the AC MC is not trivial, 
although it  can be written as a sum of independent contributions from the one-dimensional 
subbands. This structure leads to an oscillatory behaviour of the form (sinzx)/x2 where 
x = w L / u  in which U is the Fermi velocity, Moreover, in contrast with the DC MC, the AC 
MC of a clean system at finite frequency depends on the length of the system and behaves 
as L-2 at large L. 

For disordered systems, two points are to be remembered. First, at a finite frequency, 
we cannot spot a self-averaging quantity, and we are tempted to conjecture that (In C) is 
proportional to -In L.  as is evidently suggested in figure 5(b).  Second. one cannot speak 
of a positive (or negative) AC MC since it is not valid at higher frequencies. This is evident 
from a glance at figure 6. 
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